
COMP 110/L Lecture 21
Mahdi Ebrahimi

Slides adapted from Dr. Kyle Dewey

Outline

•this

•instanceof

•Casting

•equals()

•protected

•interface

this

this
Refers to whatever instance the given instance method is

called on.

this
Refers to whatever instance the given instance method is

called on.

public class Foo {
public Foo returnMyself() {
return this;

}
}

Example:
ThisExample.java

Name Clashes
this can be used to refer to instance variables which have

the same name as normal variables

Name Clashes
this can be used to refer to instance variables which have

the same name as normal variables

public class NameClash {
private int x;
public NameClash(int x) {
this.x = x;

}
}

Example:
NameClash.java

instanceof

instanceof
Returns a boolean indicating if a given instance was made

from or inherited from a given class

instanceof
Returns a boolean indicating if a given instance was made

from or inherited from a given class

public class InstanceOf {
public static void main(String[] a) {
InstanceOf i = new InstanceOf();
if (i instanceof InstanceOf &&

i instanceof Object) {
// code reaches this point

}
}

}

Example:
InstanceOfExample.java

Casting

Casting
Converts a value of one type into another.

Not always possible to perform.

Casting
Converts a value of one type into another.

Not always possible to perform.

int myInt0 = 16.0;

int myInt1 = (int)16.0;

// myInt2 gets set to 16
int myInt2 = (int)16.5;

Casting

int myInt1 = (int)16.0;

// myInt2 gets set to 16
int myInt2 = (int)16.5;

Converts a value of one type into another.
Not always possible to perform.

int myInt0 = 16.0;

Does not compile

Casting
Converts a value of one type into another.

Not always possible to perform.

int myInt0 = 16.0;

int myInt1 = (int)16.0;

// myInt2 gets set to 16
int myInt2 = (int)16.5;

Casting

// myInt2 gets set to 16
int myInt2 = (int)16.5;

Converts a value of one type into another.
Not always possible to perform.

int myInt0 = 16.0;

int myInt1 = (int)16.0;

myInt1 holds 16

Casting
Converts a value of one type into another.

Not always possible to perform.

int myInt0 = 16.0;

int myInt1 = (int)16.0;

int myInt2 = (int)16.5;

Casting
Converts a value of one type into another.

Not always possible to perform.

int myInt0 = 16.0;

int myInt1 = (int)16.0;

int myInt2 = (int)16.5;

myInt2 holds 16

Casting
Converts a value of one type into another.

Not always possible to perform.

Casting
Converts a value of one type into another.

Not always possible to perform.

public class Foo { ... }
...
Foo f = new Foo();

Casting
Converts a value of one type into another.

Not always possible to perform.

public class Foo { ... }
...
Foo f = new Foo();
Object o = f;

Casting
Converts a value of one type into another.

Not always possible to perform.

public class Foo { ... }
...
Foo f = new Foo();
Object o = f;
Foo g = o;

Casting
Converts a value of one type into another.

Not always possible to perform.

public class Foo { ... }
...
Foo f = new Foo();
Object o = f;
Foo g = o; Does not compile

Casting
Converts a value of one type into another.

Not always possible to perform.

public class Foo { ... }
...
Foo f = new Foo();
Object o = f;
Foo g = (Foo)o;

Casting
Converts a value of one type into another.

Not always possible to perform.

public class Foo { ... }
...
Foo f = new Foo();
Object o = f;
Foo g = (Foo)o; Compiles and runs ok

Casting
Converts a value of one type into another.

Not always possible to perform.

Casting
Converts a value of one type into another.

Not always possible to perform.

public
public

class
class

Foo
Bar

{
{
...
...

}
}

...

Casting
Converts a value of one type into another.

Not always possible to perform.

public
public

class
class

Foo
Bar

{
{

...

...
}
}

...
Foo f = new Foo();
Bar b = new Bar();

Casting
Converts a value of one type into another.

Not always possible to perform.

public
public

class
class

Foo {
Bar {

...

...
}
}

...
Foo f = new Foo();
Bar b = new Bar();
f = b;

Casting
Converts a value of one type into another.

Not always possible to perform.

public
public

class
class

Foo
Bar

{
{

...

...
}
}

...
Foo f = new Foo();
Bar b = new Bar();
f = b; Does not compile

Casting
Converts a value of one type into another.

Not always possible to perform.

public
public

class
class

Foo
Bar

{
{

...

...
}
}

...
Foo f = new Foo();
Bar b = new Bar();
f = (Foo)b;

Casting
Converts a value of one type into another.

Not always possible to perform.

public
public

class
class

Foo
Bar

{
{

...

...
}
}

...
Foo f = new Foo();
Bar b = new Bar();
f = (Foo)b;

Compiles,but doesn’t run correctly
(gives a ClassCastException)

equals()

equals()
Used to determine if two arbitrary objects are equal.

Defined in Object.

equals()
Used to determine if two arbitrary objects are equal.

Defined in Object.

“foo”.equals(“foo”)

Returns true

equals()
Used to determine if two arbitrary objects are equal.

Defined in Object.

“foo”.equals(“foo”)

Returns true

“foo”.equals(“bar”)

equals()
Used to determine if two arbitrary objects are equal.

Defined in Object.

“foo”.equals(“foo”)

Returns true

“foo”.equals(“bar”)

Returns false

equals() vs. ==

• With equals(),we test object equality,
AKA deep equality

• Look at the inside of the object

• With ==, we test reference equality, AKA
shallow equality

• Return true if two references refer to
the exact same object

Example:
StringEquals.java

Defining YourOwn
equals()

• Usual pattern:see if the given thing is an
instance of my class

• If true, cast it to the class,and do
some deep comparisons

• If false, returnfalse

• Anything is possible

Example:
CustomEquals.java

protected

protected
Somewhere between private and public.

Like private, but subclasses can access it.

protected
Somewhere between private and public.

Like private, but subclasses can access it.

public class HasPrivate {
private int x;

}

protected
Somewhere between private and public.

Like private, but subclasses can access it.

public class HasPrivate {
private int x;

}
public class Sub extends HasPrivate {
...x...

}

protected
Somewhere between private and public.

Like private, but subclasses can access it.

public class HasPrivate {
private int x;

}
public class Sub extends HasPrivate {
...x...

}

Not permitted - x is private in HasPrivate

protected
Somewhere between private and public.

Like private, but subclasses can access it.

public class HasPrivate {
private int x;

}
public class Sub extends HasPrivate {
...x...

}
public class HasProt {
protected int x;

}
public class Sub extends HasProt {
...x...

}

protected
Somewhere between private and public.

Like private, but subclasses can access it.

public class HasPrivate {
private int x;

}
public class Sub extends HasPrivate {
...x...

}
public class HasProt {
protected int x;

}
public class Sub extends HasProt {
...x...

}
OK:Sub is a subclass of HasProt

A package in Java is used to group related classes. Think of it as a folder in a
file directory. We use packages to avoid name conflicts, and to write a better
maintainable code.

https://www.w3schools.com/java/java_packages.asp

https://www.geeksforgeeks.org/access-modifiers-java/

interface

Mammal breathe

Animal

breathe Mammal

Animal

breathe Mammal

Animal

breathe Mammal

interface

• Like an abstract class with the following
restrictions:

• Cannot have constructors

• Cannot have instance variables

• However, we can inherit from them
anywhere,and we can inherit from multiple
interfaces

Using interfaces

public interface CanBreathe {
public void breathe();

}

Using interfaces

public interface CanBreathe {
public void breathe();

}

public class Foo extends Bar
implements CanBreathe {
public void breathe() { ... }

}

Using interfaces

public interface CanBreathe {
public void breathe();

}

public class Foo extends Bar
implements CanBreathe {
public void breathe() { ... }

}

public class Multi extends Alpha
implements Beta, Gamma, Delta { ... }

Example
•Animal.java

•CanBreathe.java

•Mammal.java

•Dog.java

•Cat.java

•CanFly.java

•Parrot.java

•Bat.java

•Spider.java

•AnimalMain.java

